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The CNR Foresight project aims to define research strategies for the next future. It is a common 

feeling  in  our  society,  even  among  non-scientist,  that  the  XXI century  will  pose formidable 

challenges to Science. One is how to deal effectively with Complexity in the physical, biological, 

ecological, and social universe. Stephen Hawking himself declared that this ‘will be the century 

of complexity’.  Although  the  word Complexity  is  sometimes  ambiguous  is  generally  accepted 

that it refers to the emergence of unexpected collective properties, a priori unexpected from 

microscopic interactions. On general grounds, complex systems are characterized by: many 

heterogeneous interacting parts; multiple scales; complicated transition laws; unpredicted 

emergence; sensitive dependence on initial conditions; path-dependent dynamics; networked 

hierarchical connectivities; interaction of autonomous agents; self organisation; non-equilibrium 

dynamics etc [SanMiguel 2012]. 
 

A large  progress has been  achieved  in  the  recent  decades:  concepts like  self-organization, 

emergence,  complex  networks,  pattern   formation,  criticality,  deterministic  chaos, 

synchronization etc were conceptualized and constitute a powerful conceptual background that 

is currently being exported  from physics to other disciplines [Badii 1999]. 
 

However,  there  is indeed a urgent  need  to reduce the gap  between pure  and  applied science, 

hoping  to  manage and  control  systems with  levels  of complexity  exceeding  the  capacity  of 

current  approaches. A new  generation  of scientist  should  emerge, trained  to understand how 

complex  systems behave, how  to  live  with  them,  to  control  them  and  to  design  them  well. 

Examples are countless: in the natural sciences we may just mention genetic networks, bio- 

molecules, habitats and  ecology, weather and  climate among  many.  In technology one  has to 

face complex hierarchical networks in distributed computing, complex materials and process 

control. In social sciences and  economics problem like transport management, risk evaluation 

epidemic spreading, social networks etc. will all benefit from a deeper knowledge of Complexity 

Sciences. 
 
 
 

Big data?  Big theory! The need for understanding 
 

In all domains, complex systems are studied through increasingly large quantities of data, 

stimulating  revolutionary  scientific  breakthroughs.  Those  developments  will  pose  new  and 
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fundamental theoretical issues to scientists that are  to face  such Data Deluge. However,  data, 

whether  produced by massive simulations or automated experimentation, is not understanding. 

[Crutchfield2014]. The  impressive advances in computing power  and  data  acquisition 

technologies have  led some to claim that  theory is somehow obsolete: large-scale simulations 

can  now  include  all  system components and  so are  complete:  there’s  no  need  to suffer  the 

inevitable simplifications theory requires. This point of view is questionable:  Complexity science 

needs  to  go  beyond   data   literalism   (“data   describes   Nature”)   and   computationalism   (“a 

computer code is the theory of the phenomenon it simulates”). Though [Crutchfield2014], 
 

[...]  there  is   now   a   new   and   very   real   possibility   for   a   novel  synthesis of advances in 
experimental technique, high-performance  computing,  and   theory:  automatically building 
theories  from data.  That  is,to  the  extent  we  understand  pattern,  we  can  use  machines  to find 
emergent  organization  in  our  vast data  sets.  And  from  there,  the  machines  can  build  our 
theories, most likely with  guidance  from  a  new   generation  of  theorists. 

 

Altogether  this calls for a critical, balanced interplay experiment, computing, and  theory will be 

required  where  Big  Theory,   given  its  critical  role  in  understanding  such complex  systems, 

deserves a place. 
 

 

Inference: learning from data 
 

The  recent  success of machine  learning  as implemented  through  deep  neural  networks has 

been  embraced with enthusiasm. Without doubt, the impact of such recent  achievements on our 

societies   and   lives   cannot   be   underestimated     [Mezard   2018].   But  in   spite   of  practical 

successes,  it  is   recognized   that   the   underlying   functioning   mechanisms   are   largely   not 

understood. For physicists expert in spin glasses, the energy landscape is unexpectedly smooth. 

Indeed, the good performance can be explained only in a nonequilibrium statistical physics 

framework: regions of the optimization landscape exist that are both robust and accessible and 

that  their existence  is  crucial  to achieve  good  performance on a  class  of particularly  difficult 

learning problems [Baldassi 2016]. 
 

This is by no means only  an  academic issue:  without  a more  deep  understanding we are  not 

guaranteed that  any deep  network  will always  perform  the  task for which  it was trained.  This 

poses obvious problem and  challenges in a world were  sensible decision may be taken  based 

on such inferences. 
 

Limitations in learning from data  arise also when considering the analogy between derivation of 

macrolaws   from   microscopic   in   statistical   physics   and   statistical   inference   from   data 

[Moore2018]. Since  data  are  necessarily noisy and  incomplete, there  could indeed be a phase 

transition that hinders the inference process. When the amount  of noise in a data  set crosses a 

critical threshold, it can suddenly become impossible to find underlying patterns in it, or even tell 

if a pattern  is really there. This includes finding communities in social and biological networks, or 

clusters in high-dimensional data,  or structure in noisy matrices and tensors. How can we locate 

these phase transitions, and  design algorithms that perform as well as possible? What 

informational and computational barriers do these transitions create? Once  more only a deeper 

insight of the theory behind will be needed. 



 
 
 
 
 
 
 

Predicting, forecasting, modeling 
 

Complexity unavoidably leads to large fluctuations and  managing the resulting uncertainty is a 

major challenge: to cope  with it we need  to perform forecasts. Also we need  to understand what 

are the limitation and applicability ranges of our predictions. 
 

Recently, availability of huge data  set revived the inductivist approach, which just relies on 

knowledge of the past, basically by finding analogues. The underlying belief is that big data will 

lead  to  much   better  forecasts.  However,  this  point  of view  can  be  in  practice  useless:  the 

required analog, whose existence is guaranteed in theory, sometimes cannot  be expected to be 

found in practice, even if complete and precise information about the system is available. In fact, 

the mean  recurrence time is exponentially large in the system phase-space dimension so that in 

practice, a recurrence is never observed [Hosni 2018] and this approach may be of little use. 
 

The case of weather forecast is also instructive: in principle, future weather can be predicted by 

solving the proper partial differential equations with initial conditions given by the present state of 

the atmosphere. But, they are too accurate: they also describe high-frequency wave motions that 

are irrelevant for meteorology. A much more useful approach is to construct effective equations 

eliminating  irrelevant  (fast)  variables.  Such  equations  have  great  computational  advantages 

making the numerical computations satisfactorily efficient. But, even  more  importantly, capture 

the  essence of the  phenomena of interest,  which  could  otherwise  be  hidden  in  too detailed  a 

description, as in the case of the complete set of original equations. Thus the effective equations 

are a form of clever reductionism: they are not mere  approximations but rather  require a subtle 

mixture of hypotheses, theory and observations [Baldovin 2019]. 
 

In the study of modeling and prediction of natural, as well social, phenomena, a crucial aspect is 

the understanding of the cause-effect relationships among  different variables; perhaps the most 

popular example is, in the context of the climatic change, the debated link between temperature 

and  CO2. Today  it is well known that often the first natural approach in terms of correlations is 

not  enough   accurate and  can  produce paradoxical  conclusions  [Pearl  2000],  therefore   it  is 

necessary to use more sophisticated approaches. Looking at causality as a flow of information 

among  processes one can use mathematical methods based on ideas from dynamical systems 

and information theory [Schreiber 2000, Palus et al 2007]. 
 

Altogether,  the above  considerations can  be summarized in a word by stating that modeling is 

an art that is  necessary to master to cope with Complexity. 
 

Inferring connectivities and dynamics 
 

Emergent dynamical properties are intimately related  to the topology of the underlying network of 

connections  among  the  constituent  parts of the  system. This  concept, which  is  central  in  so 



called network  science leads to the issue of the inverse problem, namely how to infer the 

connectivities from data  and  use them in network model building. To mention a concrete case, 

one   may   wish   to  reconstruct  the   distribution   of  connectivity   of  a   neural   network   from 

measurement of global neural activity measurements [Adam 2019]. As discussed above, 

reductionism  calls  for a  suitable  modeling,  with  previous  insight  of relevant  variables:  in  the 

above  case, one  may  start from a  theoretical  model  (e.g.  in  this  example  the  “Heterogenous 

Mean-Field  approximation”)  and  use it  as a  criteria  try to  organize  the  neurons in  different 

classes,  depending  on their associated  degree and  current.   The  resulting  connection  can  be 

than back-tested against further measurements. 
 

A challenging perspective regards the reconstruction of the dynamics: to what extent  one  can 

use  sophisticated  approaches like for instance reservoir computing to perform predictions and 

attractor  reconstruction of chaotic dynamical systems from time series data  ? Theoretical 

framework  that describes conditions under  which reservoir computing can  create an empirical 

model capable of skillful short-term forecasts and accurate long-term ergodic behavior are being 

investigated [Lu 2018]. It is presumable that those approaches will be central in the future. 
 
 
 

Challenges 
 

Even from a short and partial account like the one presented in the present document, it is easy 

to realize that the field is so vast that it would be a challenge by itself to outline the main research 

objectives.  We  mention  here  three  possible  keywords/themes for the  future  Working  Group 

activity: 
 

 Predictability: how to improve it to the limits and formulate new approaches to prediction, 

forecasting and risk? How to infer causal relations between observables? 
 

 Modeling:  moving  from data  to dynamical  models; how  to develop  a  more  integrated 

approach to and understand fundamental limitations? How can we construct effective 

models that can help prediction and understanding? 
 

 Control  and  management:  how  to  use the  acquired  knowledge  to  manage a  system 

properties in an open and changing environment? 
 

The above  challenges are general and can be formulated in different scientific and technological 

research context. This also requires finding common languages among scientist with diverse 

background,  a  task that  is  by  itself  difficult  and  requires  close  interaction  and  sharing  of 

knowledge and  expertise. This will one of the aims of the future events to be organized   within 

the Foresight project. 
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