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BACKGROUND DOCUMENT
CNR S&T Foresight on Stem Materials?

MISSION

In nature, living organisms consist of a limited number of primary components and chemical
bonds organized in complex systems capable to adapt to diversified environmental
conditions. Materials are very rarely adaptable, and often require a large number of
components to achieve high performances in specific functions. In this comparison between
organisms and materials, the approach to their respective life-cycles are also largely different,
the former renewing in a continuous interaction with the environment, the latter mainly
preserving from alterations.

Indeed, materials able to perform different functions and to respond to external inputs will
become increasingly important. They will play a fundamental role in the additive production
to the extent that these are designed and structured to perform specific operations and self-
adapt to varying external conditions, without any additional device. Materials able to perform
as sensors and actuators, accordingly to external environmental conditions for fulfilling
different requirements, are still a challenge. These intelligent materials should be flexible in
any context and condition, and possibly consist of primitive units, containing the minimal and
sufficient number of components to perform a basic function, whose combinations can
respond to specific requests of multi-functionality and adaptability.

The required approach is well-known in science, looking for a bridge between the observable
macroscopic and the microscopic levels, towards a coherence between descriptions of reality
and complexity. It is not simply a matter of promoting inter and cross-disciplinarity, but in
understanding the relationships between fundamental scientific theories and contingent
conditions or environments, which can play a role in the emergence of new features.

MAIN CHALLENGES
In march 2017, the CNR-S&T Foresight Group on Materials and scientists from different
disciplines met to identify the main challenges in addressing the concept of “Stem Materials”.

A new paradigm in the modeling of artifacts has already emerged with the digitization of
manufacturing, now fueled by advances in additive manufacturing and material science [1].

* The adjective "stem", commonly attributed to cells, refers to the use of blocks of primitive
and non-specialized materials which, even if not able to differentiate spontaneously in several
other types, undergo a process of transformation aimed to make them capable to adapt to
specific requirements.
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Several researchers have proposed theoretical foundations and practical implementations of
some structures [2,3] that extend the representational capabilities of solid modeling: these
challenges require the capabilities of modeling embedded nano and microstructures, internal
geometry architectures, multi-scale behaviors, and composite multi-material objects. In this
context, the functional specification of artifact’s behavior is the least understood: many
abstractions of function and behavior have been proposed [4, 5, 6], but the formal semantics
of such models remains unclear [1]. One of the main challenges to break this impasse is to
venture beyond static structures into dynamic nanomaterials that organize and/or function
out of the thermodynamic equilibrium. In particular, over the last two decades, the focus of
materials chemistry and nanotechnology has been gradually shifting from the synthesis of
individual nanomaterial to the synthesis/assembly of hybrid organic-inorganic
heterostructure and bio-inspired supramolecular aggregates, following three different
thermodynamic approaches: “equilibrium”, “kinetically trapped” and “far-from-equilibrium”
assemblies [7,8]. Heterointegration of materials with different characteristics, including
different scales (atomic, nano, meso, macro), chemical character (organic/inorganic),
dimensionalities (e.g. interfacing 0D, 1D, and 2D objects altogether), and geometry (e.g.
topology), offers a number of still unexplored routes in this respect. For instance, the
synthesis/assembly of larger nanostructures and materials has been successful in a variety of
structures (molecule-like nanoclusters [9,10,11] 2D nanoparticle arrays [12,13,14] and 3D
crystals [15,16] DNA origami [17,18] mesoporous materials [19,20,21]). Although these
materials are being used to address important challenges in different applications (catalysis
[22], energy conversion [23,24,25], information storage and processing [26], sensing
[27,28,29], diagnostics [30,31,32] and therapeutics [33]), a radical progress seems not to be
introduced [8].

Materials scientists have explored geneticists’ lessons to identify a ‘materials genome’ that
encodes the properties of various compounds in the same way that biological information is
encoded in DNA base pairs and the way they are arranged in space. In 2003, it was first
showed [34] how a database of quantum-mechanics calculations could help to predict the
most likely crystal structure of a metal alloy — a key step for anyone in the business of
inventing new materials. The design of machine-learning algorithms capable to extract
patterns from a library of compounds has provided unprecedented results [35], but even in
the case of functional materials, current computer codes work well only for a limited number
of cases [36].

Life-like properties of materials, such as multi-functionality, adaptability, re-configurability,
taxis [37], internal feedback, or self-replication [38,39] have been definitely proposed to
reside outside of thermodynamic equilibrium [40,41,42,43,44,45] and the main challenge is to
understand if such “intelligent” materials may provide a range of functions that are not
obtained in static, equilibrium materials (e.g., reconfigurable, adaptable, and self-repairing),
thereby enabling the emergence of entirely new applications [46].

Understanding how living systems build and operate their nanoscale machinery (molecular
recognition, maintenance of non-equilibrium conditions, feedback loop, reaction-diffusion
processes, compartmentalization and communication), is foreseen for a successive integration
towards functional systems/materials [47].
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Chemical synthetic biology (CSB), as the artificial design and engineering of new “quasi-
biological” materials, , is providing unprecedented outcomes. CSB uses and assembles
biological parts, synthetic or not, to create new structures, allowing understanding the roots
of biological function and organization [48]. Recently, advances in technologies and reduced
costs are enabling a more systematic characterization of natural or artificial products,
shedding lights on the potential number of undiscovered structures. This increased capacity
suggests that one of the most substantial issues to be investigated is not the discovery of new
products but rather the design and the construction of pathways that lead to the desired
production [49]. Recent work to build large libraries of genes and regulatory parts have
increased the control of gene expression by many orders of magnitude [50,51]. In this context,
CRISPR interference has already gained traction in industry, agriculture and medicine as a
powerful tool [52,53]. Nevertheless, these results are designed by trial and error, rather than
being based on a fundamental understanding of how to build a functioning organism [54].

The identification and design of “primitive units”, where minimal and sufficient components
are contained to perform a basic function, seems far to come: the concept of a “minimal but
complex cell” has been already developed and a “systemic approach” to the whole complex
system is required [55,56].

This challenge is addressing the relationships between the components inside the cell and
those with the contingent conditions of the external environment. A better understanding of
genetic changes enabling living organisms to respond to stress and the definition of the
underlying mechanisms of plant adaptation to “unprecedented” environments (such as
spaceflight) is already under investigation [57]. Having in mind that most of systems found in
nature are not in thermodynamic equilibrium, continuously and discontinuously subject to
flux of matter and energy to and from other systems and to chemical reactions, understanding
non-equilibrium states is indisputably one of the issues to be addressed [58,59,33].

The issue of non-equilibrium is indirectly linked to an aspect which is asking the material
science and biology communities to tackle the challenge of “stem materials”: sustainability. If
sustainability has been traditionally embedded in the challenge of securing critical raw
materials, in living organisms it can be associated to the aspects of homeostasis [60]. In this
regard, despite performance is usually opposed to multi-functionality and adaptability, the
capability to recycle and convert the environmental resources to address specific needs has to
be considered a sort of fil-rouge when designing the next generation of materials.

We would like to thank the participants to the scoping workshop held in Rome on 23-24
March 2017 for their contribution in the elaboration of this document: Tommaso Calarco,
Andrea Camposeo, Michele Laus, Pier Luigi Luisi, Liberato Manna, Nicola Marzari, Alessandro
Molle, Francesco Stellacci and Angelo Vulpiani.
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We are facing unprecedented impacts from simulations and processing in material sciences as
well as from chemical synthetic biology, where their common approach is by trials or
mimicking nature.

The way forward “Stem Materials”, in terms of multi-functionality and adaptability, requires
addressing different aspects (see figure 1) which are independently advancing. In this
scenario, it is well known that the context fixes the relevant level of description of a reality
[61]: fundamental laws do not describe true facts whereas phenomenological laws refer to

empirical reality.

The main dilemma is in identifying paths and action towards a general and breakthrough
framework for primitive units as a sort of ribosome of Materials and their combinations.

<NONEQULBRUIV>
SYSTEMICAPPROACH
MFLSEALE CONTEXT DEPENDEN>
SUSTAINABILITY
MACHINE LEARNING SYNTHETIC BIOLOGY
COGNITION QUASI-BIO
STRUCTURE

ASSEMBLING
INTEGRATION

Figure 1: a brief sketch of the aspects identified as those to be addressed for tackling the
challenge of stem materials. In blue, those which at the moment seem to be closer to biology,
in red those which are mainly framed in physics, material and computing sciences, and in
green the aspect of sustainability which addresses both homeostasis and critical raw

materials .
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